In vitro comparison of two different materials for the repair of urethan dimethacrylate denture bases


Cilingir A., BILHAN H., GECKILI O., SULUN T., BOZDAG E., Sünbüloğlu E.

JOURNAL OF ADVANCED PROSTHODONTICS, cilt.5, sa.4, ss.396-401, 2013 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 5 Sayı: 4
  • Basım Tarihi: 2013
  • Doi Numarası: 10.4047/jap.2013.5.4.396
  • Dergi Adı: JOURNAL OF ADVANCED PROSTHODONTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.396-401
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

PURPOSE. The purpose of this in vitro study was to investigate the flexural properties of a recently introduced urethane dimethacrylate denture base material (Eclipse) after being repaired with two different materials. MATERIALS AND METHODS. Two repair groups and a control group consisting of 10 specimens each were generated. The ES group was repaired with auto-polymerizing polymer. The EE group was repaired with the Eclipse. The E group was left intact as a control group. A 3-point bending test device which was set to travel at a crosshead speed of 5 mm/min was used. Specimens were loaded until fracture occurred and the mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations were calculated for each group and the data were statistically analyzed. The results were assessed at a significance level of P<.05. RESULTS. The mean "displacement", "maximum load before fracture", flexural strength" and "flexural modulus" rates of Group E were statistically significant higher than those of Groups ES and EE, but no significant difference (P>.05) was found between the mean values of Group ES and EE. There was a statistically significant positive relation (P<.01) between the displacement and maximum load of Group ES (99.5%), Group EE (94.3%) and Group E (84.4%). CONCLUSION. The more economic and commonly used self-curing acrylic resin can be recommended as an alternative repair material for Eclipse denture bases.