Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete


AKÇAY ALDANMAZ B., Tasdemir M. A.

CONSTRUCTION AND BUILDING MATERIALS, cilt.28, sa.1, ss.287-293, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28 Sayı: 1
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1016/j.conbuildmat.2011.08.044
  • Dergi Adı: CONSTRUCTION AND BUILDING MATERIALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.287-293
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

In this study, mixture design, workability, fibre dispersion/orientation, mechanical properties and fracture behaviour of hybrid steel fibre reinforced self-compacting concretes (HSFRSCCs) were investigated. Three different types of steel fibres with and/or without hooked-ends were added to the mixtures in two different volume fractions (0.75 and 1.5% of the total volume of concrete). The results of slump flow, U-box, V-funnel and J-ring tests have shown that increasing the fibre content of the concretes slightly reduced the workability of HSFRSCC, and the main influencing factor on flowability is the geometry of fibres. The addition of fibres, although did not change the final flowability, decreased the rate of flowability. The results from the experimental tests showed that the flexural strengths increased slightly with increasing strength of long fibres, whereas the splitting tensile strength remained unchanged. The concretes with high strength, long steel fibres show behaviour of enhanced toughness and ductility compared to that with normal strength steel fibres. The orientation and distribution of fibres in concrete have been investigated by image analysis and it was observed that fibres dispersed homogeneously in all concrete series without any clumping. With increasing the amount of fibres, the fibres were more vertically orientated relative to the bending loading direction, resulting in enhancement in the mechanical properties of concrete. (C) 2011 Elsevier Ltd. All rights reserved.