Utilisation of Mass and Night Ventilation in Decreasing Cooling Load Demand


Darmanis M., Çakan M., Moustris K. P., Kavadias K. A., Nikas K. P.

SUSTAINABILITY, cilt.12, sa.18, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 18
  • Basım Tarihi: 2020
  • Doi Numarası: 10.3390/su12187826
  • Dergi Adı: SUSTAINABILITY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, Aerospace Database, Agricultural & Environmental Science Database, CAB Abstracts, Communication Abstracts, Geobase, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • İstanbul Teknik Üniversitesi Adresli: Evet

Özet

y The building sector consumes 36% of the world's energy and produces around 40% of energy-related carbon emissions. While the building industry moves towards a zero net greenhouse-gas emission policy, ventilation is, and will be, a necessity for the preservation of air quality-especially in climates defined by unsavoury conditions. Therefore, a "mixing mode" cooling system was employed to lower the required energy consumption at an earthen building situated in the premises of Istanbul Technical University. A room of the high-mass earthen building was monitored under different ventilation and shading conditions. Night ventilation was conducted using two modes, 3.2 and 2.3 air changes per hour, and the air conditioning unit, operating from 08:00 to 17:00, had a set temperature of 23 degrees C. Night ventilation was somewhat impactful, reducing the average expected cooling energy demand up to 27%. Furthermore, the earthen building proved to be extremely effective on moderating extremes of temperature under non-ventilated conditions. During a rather hot day, with an outdoor maximum temperature of 35 degrees C, the indoor maximum temperature of the high-mass building was only 25 degrees C, namely within thermal comfort levels. The diurnal temperature proved to be key in the effective application of night ventilation.